Post

Merge Sort

✅ Merge Sort

Divide and Conquer

  1. Divide: divide the array into two sub arrays
  2. Conquer: each subarray sorted
  3. Merge: merge back together
    when merging, since two sub arrays are sorted,
    can merge comparing the two subarrays one by one

Screenshot 2024-07-18 at 22 22 49

⭐️ Keyword

Sorting Linked List

✅ Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
private void solve() {
    int[] array = { 230, 10, 60, 550, 40, 220, 20 };

    mergeSort(array, 0, array.length - 1);

    for (int v : array) {
        System.out.println(v);
    }
}

public static void mergeSort(int[] array, int left, int right) {
    if (left < right) {
        int mid = (left + right) / 2;

        mergeSort(array, left, mid);
        mergeSort(array, mid + 1, right);
        merge(array, left, mid, right);
    }
}

public static void merge(int[] array, int left, int mid, int right) {
    int[] L = Arrays.copyOfRange(array, left, mid + 1);
    int[] R = Arrays.copyOfRange(array, mid + 1, right + 1);

    int i = 0, j = 0, k = left;
    int ll = L.length, rl = R.length;

    while (i < ll && j < rl) {
        if (L[i] <= R[j]) {
            array[k] = L[i++];
        } else {
            array[k] = R[j++];
        }
        k++;
    }

    while (i < ll) {
        array[k++] = L[i++];
    }

    while (j < rl) {
        array[k++] = R[j++];
    }
}

✅ Time complexity

each of log(n) levels, merging step takes O(n) time.
thus, the total time T(n) = O(n) * log(n)
Time complexity: O(NlogN)

✔️ Best scenario

Big omega Ω(nlogn)

✔️ Worst scenario

Big O notation O(nlogn)

✔️ Average

Theta Θ(nlogn)

✅ Space complexity

O(n), additional space required for temporarily storing data while merging

👍🏻 Pros

  • stable sort
  • guaranteed worst case performance

👎🏻 Cons

  • space complexity high
  • not in-place algorithm
    • requires additional memory while merging

🆚 Quick sort

QuickSort: pivot ➡️ partition ➡️ divide
MergeSort: divide and sort as much as possible ➡️ merge

💡 Reference

https://gyoogle.dev/blog/algorithm/Merge%20Sort.html

This post is licensed under CC BY 4.0 by the author.